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Let z: [0, 1] ~ [0, 1] be a piecewise monotonic, C,  and expanding map. In 
computing an orbit {zi(x0)}~=0 , we model the roundoff error at each iteration 
by a singular perturbation; i.e., Xn+l=~(Xn)+ W~, where W~ is a random 
variable taking on discrete values in an interval ( -e ,  e). The main result proves 
that this process admits an absolutely continuous invariant measure which 
approaches the absolutely continuous measure invariant under the deterministic 
map ~ as the precision of computation e ~ 0. 
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bations; absolutely continuous invariant measures; computer orbits. 

1. I N T R O D U C T I O N  

M a n y  ma thema t i ca l  models  can be viewed as ideal iza t ions  of  na ture  and 
there is often some quant i f iable  measure  of the extent  to which the mode l  
app rox ima te s  reality. However ,  very litt le is k n o w n  abou t  how to es t imate  
the fidelity with which numer ica l  s imula t ions  reflect the compl ica ted  
behav io r  of dynamica l  systems. (See C h a p t e r  2 of Ref. 14 for a deta i led  dis- 
cussion.)  W h a t  has been observed  is that  compu te r  s imula t ions  seem to 
yield the "r ight"  results in many  cases. More  specifically, let r: [0, 1 ] --* 
[0, 1] be a m a p  that  admi ts  an invar ian t  measure  tha t  is abso lu te ly  con- 
t inuous  with respect  to Lebesgue measure ,  as, for example ,  piecewise 

m o n o t o n i c  maps  tha t  are expanding.  ~4) It  can be verified tha t  for many  
such r, the c o m p u t e d  orb i t  of a lmos t  every s tar t ing po in t  under  i te ra t ions  
of ~ has a h i s tog ram tha t  app rox ima te s  the h i s tog ram ob ta ined  from the 
absolu te ly  con t inuous  invar ian t  measure.  

A mode l  for c o m p u t e r  orbi ts  is based  on the following: we assume that  
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the computation can be done with infinite precision and the roundoff error 
is added as a noise term at each step. Thus, at the nth step, x n + l =  
r(xn) + W, where W is a random variable. Such a model has been used in 
Refs. 1, 2, 6, 9, 11, 13, and 16, where the perturbation term is assumed to 
be "absolutely continuous," i.e., the probability density function of W is 
supported on intervals. A more general model for the random perturbation 
term is presented in Ref. 18 for endomorphisms of the interval [0, 1] 
satisfying the conditions of Misiurewicz. (19) Because such a perturbation 
term smears computational approximations in a smooth way, they give 
erroneous predictions in some simple cases. For example, because most 
computers use binary arithmetic, the calculations for the triangle map 
~: [0 ,1]  ~ [0, I] ,  defined by ~(x)=2x,  0~<x~<�89 and ~ ( x ) = 2 ( 1 - x ) ,  
�89 ~< x ~< 1, are exact for dyadic rationals. Thus, the computed orbit becomes 
constant at 0 after a few iterations. But the model with a smooth pertur- 
bation density predicts a uniform density on [0, 1 ]! 

The problem in the above model lies in the assumption that the com- 
putation error is uniformly distributed, usually in the range - �89 to �89 times 
the least significant digit kept. This ignores "the obvious fact that the actual 
distribution of machine roundoff must be granular since only certain roun- 
doffs can occur" (Ref. 14, p. 33). 

In Ref. 15, certain types of singular perturbations are considered. By a 
singular perturbation in Ref. 15 is meant a continuous function close to the 
identity. Furthermore, the map ~ must be continuous. 

In this paper we model the computer error by a finite, discrete random 
variable, and prove that the absolutely continuous measure of the map ~ is 
stable under such perturbations. This yields a priori assurance that com- 
puter orbits of certain maps will exhibit the correct invariant measure. 

Most of the ideas in this paper are not new; the main observation is 
that they continue to work when the perturbations are "singular." For 
example, Theorem 1 is well known and the ideas for the proof of the main 
theorem are mostly borrowed from Ref. 16. 

For interesting discussions on computer orbits, the reader is referred 
to Refs. 6-8 and 10. 

2. S I N G U L A R  P E R T U R B A T I O N  C O M P U T E R  M O D E L  

Let I =  [0, 1] and let (~1, li-I[1) denote the space of all integrable 
functions with respect to Lebesgue measure on L Let T: I ~  I be a non- 
singular transformation. The Frobenius-Perron operator (s) P~: 5e 1 --. ~1 is 
defined by 

P ~ f ( x ) = d l  f ( y ) d y  
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If X is a random variable with probability density function f ,  then P~ f can 
be interpreted as the probability density function of the random variable 
~(x). 

Let x e L In computing r(x), we shall regard the number computed as 
the true answer plus a random number (Ref. 14, Section 2.5), i.e., 

x . + ,  = r(x.)  + w~ (1) 

Since the error between the true value z(x,) and the computed value x~+~ 
must differ by a number from a discrete set of numbers, W~ is a discrete 
random variable. Let e denote the magnitude of the largest computer error 
that can occur. It is a measure of the precision of computation. Thus, W~ is 
a discrete random variable with the values it can assume restricted to the 
set [ - ~ ,  el. 

Let 6.(x) denote the point measure at a eL Then we can write the 
probability function of W~ as 

N,: N~ 
h~(x) = y ~4~.~(x), ~ ,~; = 1, ~4 >>- 0 

i = l  i = 1  

where a ~  [ - e ,  e], 2~ denotes the probability that the error will be a~, and 
N~ is the total number of computer errors that can occur. 

It is reasonable to assume that the perturbation random variable is 
independent of x. .  Hence, if f is the probability density function of x.  in 
(1), then the probability density function of x~+~ is obtained by con- 
voluting the probability density function of r(x.), P~f, and h~(x): 

i.e., 

1 N~ 

f(x) : ~o P~ f (x  - z) ~ 2~6a~(z ) dz 
i = 1  

N~ 

~ f ( x ) =  ~ 2~P~f(x-a~.) (2) 
i = l  

Let a ER, and let aa: R--* R be defined by a a ( x ) = x +  a. Then the 
Frobenius-Perron operator of aa is 

P ~ f ( x ) = d  f ~ " f ( y ) d y =  f ( x - a )  

where P.o: Yl(R) ~ 2,~ 
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Thus, (2) can be written as 

Ne 

i = 1  

It is easy to show that P~P, = P~o~. Thus, 

N~ 

~ f ( x ) =  ~ 2~P~Tf(x) (3) 
i = 1  

where z~ = a~7 o ~. Since aa7 shifts r by a~, ~ will not be defined on a small 
interval either to the right of O or to the left of 1, as shown in Fig. 1. This 
reflects the possibility that if x,, is close to 0 or 1, the perturbation will take 
the computer orbit out of L Since this does not happen in practice, we shall 
extend r7 in such a way as to guarantee that the orbit stays in L In the 
sequel we shall be considering only piecewise monotonic maps that are 
expanding. To keep the extension in this class, we shall extend ~7 to f~ on 
all of I by redefining ~ on a small interval near 0 or 1, depending on 
whether a7 is negative or positive. 

A map ~: I-- ,  I is called piecewise monotonic and C 2 if there is a par- 
tition of /, 0 = c 0 < c  l <  ...  < c k = l ,  so that for each i - - 0 , 1 , . . . , k - 1 ,  
rl(ci,ci+l/ is monotone and extends to a C 2 map on [ci, ci+l] .  Under the 
expansiveness condition inf 1~'1 > 1, it is shown in Ref. 4 that z admits an 
absolutely continuous invariant measure /~. Let l~= c ~ + l - c i  denote the 
length of the ith interval. 

Let 2 o - i n f  [v'(x)[ > 1. Without loss of generality consider the case 
a~>0.  Assume r ( 1 ) =  1. Then ~ ( 1 - a ~ ) =  1. We would like to define r~ on 
all of I in such a way as to keep the same number of monotonic pieces as z 
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and such that inf,[(r~)'[ > 1. Fix So>0 and let e<eo .  Define an integer 
M = M(eo) > 0 such that 

1 - M a ' > ~ 2 > )  1 (4) 
M s  

where 2 4 2 0  is fixed and independent of e. Clearly M(eo)--* 0 as So ~ 0. 
Now define "~7 as follows: 

t v~(x), 0 ~< x ~< 1 - Me 
smooth, expanding continuation of last piece of 
z~(x) to [ 1 - -Ms ,  1] 

That smooth, expanding continuation is possible follows from (4). Figure 2 
shows the extension for the example in Fig. 1. 

If 0 <  ~(1)< 1, then for sufficiently small So, the last segment of r can 
be continued as above, directly from (a~, r~ (1 -  a~)). The foregoing exten- 
sion applies if M s  o < l k, the length of the last interval on which the par- 
tition is monotonic. Otherwise we choose s o small enough so that c k 1 < 
1 -  Me o < ck, where M is defined by (4). 

If ~(1) = 0, or if a~ < 0, an extension analogous to the one above is per- 
formed. Thus, for each a~ e ( - e ,  e), e < So, eo sufficiently small: (i) -~ has the 
same number of monotonic pieces as z, and (ii) inf I(z~)'[ ~> 2 > 1 Ve < So, 
where 2 is a fixed number ~< 2 o. 

Figure 2 
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Note that the extension near the edges is invoked only when the com- 
puter orbit is at the computer numbers that are close to 0 or 1. 

Let 

N~ 

~ f ( x ) =  ~ 2~.P~f(x) 
i = 1  

Then ~ f denotes the probability density function of the (n + 1)th com- 
puter iterate, where f is the probability density function of the nth com- 
puter iterate. 

In the terminology of Ref. 3, ~ is the Frobenius-Perron operator of a 
random map, where one of ~ ,  f~,..., f~ is applied at any time with respec- N~ 

tive probabilities 2~, 2~,..., ,~ N~' 

T h e o r e m  1. Let z:I-~I be piecewise monotonic and C 2 and 
expanding. Then for any e>0 ,  ~ admits an absolutely continuous 
invariant measure #~. 

Proof. By definition of f~, f~ is expanding. Let a~ = inf li~[ > 1. Hence 

i = 1  I ~ i l  i ~ l  

Thus, Theorem 1 of Ref. 3 applies, establishing the existence of an 
absolutely continuous invariant measure #~. | 

3. C O N T I N U I T Y  OF I N V A R I A N T  M E A S U R E S  

The main result of this section is to prove that the absolutely con- 
tinuous measure invariant under the computer model whose operator is 
approaches the absolutely continuous measure invariant under r. 

k e m m a  1. Consider the random map f~: ~1, -~ i~ ..... ~N~ with respec- 
tive probabilities 2], ~ , . . . ,  ~.e~Ne, ~i"~)0' Zff~l Ai"~= 1, e~<eo, where ~ is a 
piecewise monotonic, C 2, expanding map. Then there exist constants e and 
/? such that for f e  2'1(I ) 

l 1 

k / P ~ f < ~  II/N 1+/~ ~ / f  (5) 
0 O 

for all i =  1,..., N~, and Ve ~< to, where k/o 1 denotes the variation over I. 

Proof. By construction, ~ has the same number of monotonic pieces 
as ~, namely k, and inf I(~)'1 ~> 2 > 1, independent of i and e. Let 0 = c~ < 
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c~< . - - < c ~ = l  denote the partition points of "~, i.e., g~](c:c:+l)is 
monotonic, and let l~ = c~+ ~ - c~. By definition of g~, mini l~ = l >  0~Te ~< co. 
In the proof of Theorem 1 of Ref. 4, it is shown that 3c~,/?~ 

1 1 

0 0 

Now fl~ depends only on inf [('~)'J. Since inf [('~)'[/> 2 for all i and for all 
e ~< ~o,/3~ is independent of i and e. The constant ~ is given by 

2 
c~ = K~ -~ mini I~ 

where K~=max [o~']/min a~, and oi is defined by ~b~= (~)M, where M is 
such that t(~b~)'] >2;  o~.(x)= l((~b~)-i)'(x)[. It is easy to show that 3K such 
that K~ ~< K Vi, Ve ~< Co. By the definition of l, we obtain 

c~ <<, K + 2/l =_ ct II 

Following Ref. 16, we introduce a metric on the class of piecewise 
monotonic, expanding transformations: 

d(rl,  %) = inf{6 > 0: 3A ~_ L 3o: I ~ I ~  re(A) > 1 - 6, 

a is a diffeomorphism, T~ [A = z2 ~ and 

Y x e A :  ] o ( x ) - x [  <c5, 11/~'(x)- II <6}  

where m is Lebesgue measure on L 

k e m m a  2. Let ~ be the random map above derived from the 
piecewise monotonic, C 2, expanding map ~. Then 

d('g~, ~) ~ 2M~ 

Proof.  By the definition of g~, g ~ ( x ) = v ( x - a ~ )  for x e  [-0, 1 - M e ]  if 
a~ > 0, or for x e [Mg, 1 ] if a~ < 0. Without loss of generality, we consider 
the first case. Let a~ be the shift map: R ~ R defined, as earlier, by o~(x) = 
x + a ~ .  Since la~] <e,  [ ~ ( x ) - x ]  <~. Obviously, l(o~)'(x)l = 1. To make ~1~ 
a diffeomorphism, we redefine it to the left of 1 and to the right of 0 on a 
set of measure Me so that 

t 
0, if x = 0  

~ ( x ) =  a~(x), if M e < x < l - M e  

1, if x = l  

and 6~(x) is a diffeomorphism o n / .  



568 Boyarsky 

Let A=(Me, I-Me).  Then m(A)=I-2Me, and ~ [ ~ = ~ o ~ l  A. 
Hence, d(~i, r) <~ 2Me. | 

Def in i t i on .  (~6~ Let BV= { f e  2r V ~ f <  ~ }  and forfeBV, define 
II f II v --- k/0 t f + [I f 11 t. For an operator P: BV---, ~1, define the norm 

Lemma 3: 

Now 

Proof. 

IIIPIll =sup{llP~t~:feBg, Ilfll v} < 1 

IIIP~-~[II ~< 12 max d(r, ~7) 
i =  l,...,Ne 

By Lemma 13 of Ref. 16, we have 

I]]P~ - P~;]tl < 12d(t, ~)  

Na 

i = l  

Hence 

N~ 

i = l  

= 12 max d(r, f~) 
i =  I,...,N~. 

Let 

1 -y) 
r P)(f)= lira - P f  

n ~ o o  F/ j = 0  

Theorem 2. Let z : I ~ I  be a piecewise monotonic, C 2, and 
expanding map which admits a unique, absolutely continuous, invariant 
measure/1, with density f .  Then for e sufficiently small the random map i~ 
admits a unique, absolutely continuous, invariant measure # with density f~ 
and 

IrA- f{ll-~o 

as e ~ 0. Also, (~,  f~) is mixing for sufficiently small ~. 

Proof. By Lemma 1, ~ is ~-bounded, in the terminology of Ref. 16. 
By Lemmas 2 and 3, l i m ~  o 111P~-~lhl =0.  Therefore, Theorem 8 of Ref. 16 
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implies  tha t  ( i ~ , f . )  is ergodic  for sufficiently small  e and  tha t  

f l f ~ -  f l l~  ~ 0  as e + 0 .  
In Ref. 12 it is shown tha t  (z, f )  is mixing. Hence,  it follows f rom 

Theo rem 8c of  Ref. 16 that  ( ~ ,  f~) is mixing  for sufficiently small  ~. | 

R e m a r k  1. In Refs. 5 and  17 sufficient condi t ions  are  given for (z, #) 
to be exact. Then /~  is unique and  mixing. 

R e m a r k  2. With  more  care Theo rem 2 can be p roved  for the case 

where ~ has l i ndependen t  invar ian t  densit ies f l ,  f2 ..... f l  and  S t ,  $2,..., St 

are their  respective suppor ts .  Cons ider ing  the m a p  Z[s~, we would  proceed  
as above.  
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